منابع مشابه
On H-cofinitely supplemented modules
A module $M$ is called $emph{H}$-cofinitely supplemented if for every cofinite submodule $E$ (i.e. $M/E$ is finitely generated) of $M$ there exists a direct summand $D$ of $M$ such that $M = E + X$ holds if and only if $M = D + X$, for every submodule $X$ of $M$. In this paper we study factors, direct summands and direct sums of $emph{H}$-cofinitely supplemented modules. Let $M$ be an $emph{H}...
متن کاملOn Rad-H-supplemented Modules
Let M be a right R-module. We call M Rad-H-supplemented iffor each Y M there exists a direct summand D of M such that(Y + D)/D (Rad(M) + D)/D and (Y + D)/Y (Rad(M) + Y )/Y .It is shown that:(1) Let M = M1M2, where M1 is a fully invariant submodule of M.If M is Rad-H-supplemented, thenM1 andM2 are Rad-H-supplemented.(2) Let M = M1 M2 be a duo module and Rad--supplemented. IfM1 is radical M2-...
متن کاملStrongly noncosingular modules
An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...
متن کاملStrongly cotop modules
In this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.
متن کاملon h-cofinitely supplemented modules
a module $m$ is called $emph{h}$-cofinitely supplemented if for every cofinite submodule $e$ (i.e. $m/e$ is finitely generated) of $m$ there exists a direct summand $d$ of $m$ such that $m = e + x$ holds if and only if $m = d + x$, for every submodule $x$ of $m$. in this paper we study factors, direct summands and direct sums of $emph{h}$-cofinitely supplemented modules. let $m$ be an $emph{h}$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 2011
ISSN: 0041-5995,1573-9376
DOI: 10.1007/s11253-011-0541-9